Unsupervised Network Intrusion Detection Systems: Detecting the Unknown without Knowledge
نویسندگان
چکیده
Traditional Network Intrusion Detection Systems (NIDSs) rely on either specialized signatures of previously seen attacks, or on expensive and difficult to produce labeled traffic datasets for user-profiling to hunt out network attacks. Despite being opposite in nature, both approaches share a common downside: they require the knowledge provided by an external agent, either in terms of signatures or as normal-operation profiles. In this paper we present UNIDS, an Unsupervised Network Intrusion Detection System capable of detecting unknown network attacks without using any kind of signatures, labeled traffic, or training. UNIDS uses a novel unsupervised outliers detection approach based on Sub-Space Clustering and Multiple Evidence Accumulation techniques to pin-point different kinds of network intrusions and attacks such as DoS/DDoS, probing attacks, propagation of worms, buffer overflows, illegal access to network resources, etc. We evaluate UNIDS in three different traffic datasets, including the well-known KDD99 dataset as well as real traffic traces from two operational networks. We particularly show the ability of UNIDS to detect unknown attacks, comparing its performance against traditional misuse-detection-based NIDSs. In addition, we also evidence the supremacy of our outliers detection approach with respect to different previously used unsupervised detection techniques.
منابع مشابه
Network Anomaly Detection Using Unsupervised Model
Most existing network intrusion detection systems use signature-based methods which depend on labeled training data. This training data is usually expensive to produce due to cost of laboratory set up, experienced or knowledge person and non availability of ready software tool. Above all, these methods have difficulty in detecting new or unknown types of attacks. Using unsupervised anomaly dete...
متن کاملMoving dispersion method for statistical anomaly detection in intrusion detection systems
A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...
متن کاملAlert correlation and prediction using data mining and HMM
Intrusion Detection Systems (IDSs) are security tools widely used in computer networks. While they seem to be promising technologies, they pose some serious drawbacks: When utilized in large and high traffic networks, IDSs generate high volumes of low-level alerts which are hardly manageable. Accordingly, there emerged a recent track of security research, focused on alert correlation, which ext...
متن کاملAn Improved Intrusion Detection Technique based on two Strategies Using Decision Tree and Neural Network
In this paper we enhance the notion of anomaly detection and use both neural network (NN) and decision tree (DT) for intrusion detection. While DTs are highly successful in detecting known attacks, NNs are more interesting to detect new attacks. In our method we proposed a new approach to design the system using both DT and combination of unsupervised and supervised NN for Intrusion Detection S...
متن کاملUnsupervised Network Anomaly Detection in Real-Time on Big Data
Network anomaly detection relies on intrusion detection systems based on knowledge databases. However, building this knowledge may take time as it requires manual inspection of experts. Actual detection systems are unable to deal with 0-day attack or new user's behavior and in consequence they may fail in correctly detecting intrusions. Unsupervised network anomaly detectors overcome this issue...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Communications
دوره 35 شماره
صفحات -
تاریخ انتشار 2012